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Abstract 

A macro level finite element-based model has been developed to simulate the mechanical and impact 
response of triaxially-braided polymer matrix composites. In the analytical model, the triaxial braid 
architecture is simulated by using four parallel shell elements, each of which is modeled as a laminated 
composite. For the current analytical approach, each shell element is considered to be a smeared 
homogeneous material. The commercial transient dynamic finite element code LS-DYNA is used to 
conduct the simulations, and a continuum damage mechanics model internal to LS-DYNA is used as the 
material constitutive model. The constitutive model requires stiffness and strength properties of an 
equivalent unidirectional composite. Simplified micromechanics methods are used to determine the 
equivalent stiffness properties, and results from coupon level tests on the braided composite are utilized to 
back out the required strength properties. Simulations of quasi-static coupon tests of several 
representative braided composites are conducted to demonstrate the correlation of the model. Impact 
simulations of a represented braided composites are conducted to demonstrate the capability of the model 
to predict the penetration velocity and damage patterns obtained experimentally. 

Introduction 

The use of textile (woven and braided) polymer composites is being actively investigated for 
application in aerospace structures, as an alternative to metals or traditional laminated composites. For 
example, triaxially-braided composites are being utilized in fan cases for jet engines. To be certified as 
flight-worthy, a full-scale engine blade-out test must be performed to demonstrate that the fan 
containment system can contain a released fan blade and that the fan case can maintain sufficient 
structural integrity during the engine spool down. As part of the design process, the need exists to 
simulate the blade and case deformation, along with the resulting damage and failure, during a blade-out 
event through the use of commercial explicit finite element codes. For metallic case systems, a sufficient 
ability to properly simulate the blade-out event exists due to the fact that adequate material databases and 
engineering experience in correlating analysis and test results are available. However, the capability to 
simulate the impact response of composite materials is much less mature. The ultimate goal of the current 
research is to improve the blade-out simulation capability for composite fan cases to a level comparable to 
that available for metallic cases. The work presented in this paper is a step towards that goal. 

There has been a significant amount of research conducted in the analysis and modeling of textile 
composites. The majority of the efforts have concentrated on various means to determine the effective 
mechanical properties of woven materials. Among the earliest attempts to model these materials was the 
work of Chou and Ishikawa (Ref. 1). In their original mosaic model, the woven composite was 
approximated as a one-dimensional series of laminated cross-ply composites, and classical laminate 
theory in combination with iso-stress or iso-strain assumptions were applied to obtain the effective 
stiffness properties of the material. They later extended the model to account for the fiber undulations that 
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are present in an actual woven material (Ref. 1). This approach was extended to two-dimensions by Naik 
and Shembekar (Ref. 2), where a mixture of parallel and series assumptions were applied to obtain the 
effective properties of the material. To analyze more complicated fiber architectures, such as braided 
composites, researchers such as Pastore and Gowayed (Ref. 3) and Byun (Ref. 4) modeled the fibers as a 
series of rods at various angles, and utilized simple iso-strain assumptions to obtain the overall effective 
properties of the composite. More sophisticated analysis methods, such as those developed by Tanov and 
Tabiei (Ref. 5) and Bednarcyk and Arnold (Ref. 6), used an approach where a representative unit cell of a 
woven composite was created, and then micromechanics-based approaches were applied to compute the 
effective properties and response of the material. In the context of applying these methods within a finite 
element model, elements are created with a homogenized set of material properties, and the appropriate 
analysis method is used to generate the effective properties and response of the woven material. 

When many of these previously developed analytical methods have been used in combination with 
finite element analysis of a structure composed of woven or braided composite materials, homogenized 
elements are used, in which the architecture of the textile material is not directly accounted for within the 
finite element model. However, for triaxially-braided composites, experimental evidence has shown 
(Ref. 7) that when these materials are subject to impact, oftentimes the damage will propagate along the 
fiber directions. To best simulate these damage patterns, the braid architecture should be directly 
simulated within the finite element model. To account for the fiber architecture in a computationally 
efficient manner, Cheng (Ref. 8) created a “Braided Through the Thickness” approach, where the braided 
composite is modeled as a series of layered shell elements, where each element is a laminated composite 
with the appropriate fiber layup. The effective stiffness and strength material properties of the equivalent 
unidirectional composite then were included as input data for the finite element analysis. In the method 
developed by Cheng, fiber and matrix properties were combined using simple micromechanics-based 
approaches to obtain the required effective properties. The model was developed within the context of 
LS-DYNA (Ref. 9), a commercially available transient dynamic finite element code which is commonly 
used within the aerospace industry. A continuum damage mechanics-based composite constitutive model 
available within LS-DYNA was used as the material model. 

Littell et al. (Ref. 10) made two major extensions to the approach developed by Cheng. First of all, in 
actual braided composites, the layers of braid often do not directly sit on top of each other, but instead 
fiber shifting takes place. In their work, the discretization of the braid was adjusted to account for this 
phenomenon. More significantly, in the previously developed methods, the effective unidirectional 
composite properties of the materials utilized in a braided composite either had to be measured 
experimentally or computed by using micromechanics techniques. This approach requires an extensive 
additional experimental program, with tests on either the matrix constituent (for micromechanics 
approaches) or the equivalent unidirectional composites, besides tests on the braided composite, being 
required to obtain the needed data. These test programs can be quite complicated, with no guarantee that 
the experimental properties obtained are representative of the in-situ properties of the material. In the 
approach developed by Littell, equivalent unidirectional properties were obtained from coupon tests of the 
braided composite. In this manner, the in-situ properties were directly incorporated into the input for the 
material model, which could reduce the amount of testing required. Also, this approach has the potential 
to accurately simulate the deformation, damage and failure of a triaxially-braided composite in a 
computationally efficient manner. Alternatively, an approach of this type can be useful as a tool to verify 
more sophisticated analysis approaches. As described by Littell, et al. (Ref. 10), the stiffness and strength 
values obtained through simulations of quasi-static coupon tests correlated reasonably well to 
experimentally obtained values. However, when flat panel impact tests were simulated, while the 
predicted penetration velocity correlated reasonably well with experimentally obtained values, the 
predicted damage patterns did not correlate well to what was observed experimentally. 

In this paper, first the “Braided Through the Thickness” analysis method, and the differences between 
the approach utilized in this paper and the original methods developed by Cheng (Ref. 7) and Littell, et al. 
(Ref. 10) will be summarized and explained. Specifically, the original geometry as developed by Cheng 
(Ref. 7) (i.e., not accounting for the fiber shifting between layers) was utilized. However, as will be 
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described later in this paper, instead of utilizing a layered shell approach within each shell element to 
approximate the composite architecture, a semi-analytical approach was applied to determine the 
equivalent properties of each element based on the composite layup. The element itself was then modeled 
as a smeared continuum shell element. The philosophy developed by Littell, et al. (Ref. 10) of utilizing a 
“top-down” approach to determine the required strength properties for the material model is applied once 
again. However, the methodology was adjusted to reflect the different geometry of the analysis model and 
to account for the varying geometry within the composite unit cell in a more theoretically consistent 
manner. Simulations of quasi-static coupon tests and the correlation of the simulations to experimental 
results, for several representative composites will be described. Simulations of a flat panel impact test for 
a representative braided composite, and the comparison of the simulated penetration velocity and damage 
patterns to experimentally-obtained results will be described. 

Overview of Analysis Approach 

The “Braided Through the Thickness” analysis approach as developed by Cheng (Ref. 7) and Littell, 
et al. (Ref. 10) has currently been designed to analyze triaxially-braided polymer composites with a 
[0°/60°/–60°] braid architecture. In the braided composites, the 0° fibers have 24 k filaments per tow, 
while the 60° and –60° fibers have 12 k filaments per tow. Other triaxially-braided fiber architectures or 
theoretically any textile composite architecture can be analyzed using this approach. A unit cell of a 
typical triaxially-braided fiber preform is shown in Figure 1(a). In the figure, the 60° bias fibers are 
visible on the surface. Portions of the 0° axial fibers that lie below the bias fibers can be seen in the open 
spaces between the bias fibers. An assumption in the methodology is that the fiber bundle spacing and 
number of fibers per fiber bundle are adjusted such that the fiber volume fractions in both the axial and 
bias directions are equal. In actuality, this particular fiber architecture is quasi-isotropic in-plane. 
Therefore the global in-plane stiffness should be the same in all directions, but this condition is not 
actually enforced within the context of the analysis model. 
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To apply the analysis approach, the braided-fiber architecture is idealized. As a first step in this 
process, a schematic of the top view of the fiber architecture is shown in Figure 1(b), where the –60° bias 
fibers are green, the 60° bias fibers are red, and the 0° axial fibers are blue. As shown in the figure, the 
unit cell can be divided into four equal length parallel subcells. Next, each subcell is approximated to be a 
laminated composite composed of a stack of fiber bundles at various orientations that are determined by 
the braid architecture. Subcell A is modeled as a [60°/0°/–60°] composite (bottom layer listed first). 
Subcell B is modeled as a [60°/–60°] composite, subcell C is modeled as a [–60°/0°/60°] composite, and 
subcell D is modeled as a [–60°/60°] composite. This idealization is shown in Figure 1(c). For subcells A 
and C, the fact that the 0° fiber tows have twice as many filaments per tow as the 60° and –60° layers is 
accounted for by making the 0° layer twice as thick as the remaining two layers. Each subcell can be 
modeled as an individual shell element in a finite element model. A unit cell then consists of four shell 
elements. Shell elements can be used since the length and width of the composite structures typically 
considered are much greater than the thickness. This conclusion can be justified based on impact tests 
discussed by Littell (Ref. 11), where the out-of-plane deformation in a flat panel impact test was found to 
be relatively small in relation to the panel dimensions. A full structure can then be modeled by replicating 
this four element unit cell throughout the finite element mesh. Each subcell is assumed to be equal 
thickness. In the one-layer model as described here, the plies in subcells B and D have lower overall fiber 
volume fractions due to the lack of axial fibers, resulting in these subcells only having two plies while 
subcells A and C have three plies. Note also that while each subcell is approximated as an anti-symmetric 
composite, the normal-bending coupling that is normally associated with a composite architecture of this 
type is assumed to be negligible. Due to the overall architecture of the braided composite, such coupling 
was not observed experimentally in composites of this type (Ref. 11). As a result, the portion of the 
laminate stiffness matrix (commonly referred to as the “B” matrix) that relates the in-plane loads to out-
of-plane curvatures is assumed to be equal to zero. This approximation can be enforced due to the nature 
of the method used to model each subcell in the analysis model. Specifically, for this particular study, 
instead of modeling each subcell as a layered shell element, with each layer modeled explicitly within the 
finite element model (as was done by Cheng (Ref. 8) and Littell, et al. (Ref. 10)), each subcell was 
modeled as a smeared continuum shell element, with the effective stiffness properties determined using a 
combination of mechanics of materials-based micromechanics methods and classical laminate theory. The 
strength properties of each shell element are determined based on global coupon data from the braided 
composite. The details of how the stiffness and strength properties are determined will be described later 
in this paper. Applying a layered shell approach would allow for simulating the growth of damage in each 
layer independently, which could lead to an improved prediction of the damage patterns in the material 
due to impact. However, the approach of using smeared continuum shell elements for each subcell was 
chosen due to the fact that for the analyses in this paper difficulties were encountered in obtaining valid 
analytical results for a layered shell model using the applied constitutive model (to be discussed below). 
The assumption was made that even with using smeared continuum shell elements the overall damage 
patterns could be predicted adequately. Furthermore, another potential advantage of using smeared 
continuum elements for each subcell as opposed to a layered shell model would be an increase in 
computational efficiency. Computational efficiency is of key importance in simulating impact events on a 
full structure when the fiber tow dimensions are large enough that the composite architecture needs to be 
accounted for in the model. 

The actual braided composites which were examined in this study had six layers of braided fibers 
(Fig. 2). For this study, a six layer model was created by stacking six of the single-layer models 
(Fig. 1(c)) on top of each other. The fiber shifting that sometimes occurs between layers, identified by 
Littell, et al. (Ref. 10), was not accounted for in this approach. By not accounting for the fiber shifting, 
and thus ensuring that the geometry of each subcell is different, the architecturally dependent damage that 
occurs during impact is more likely to be captured. 
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Constitutive Model Overview 

Due to the desire to apply this analysis methodology to the simulation of impact problems, the model 
was implemented within the context of LS-DYNA (Ref. 9), a commercially available transient dynamic 
explicit finite element code that is widely used within the aerospace industry to conduct impact analyses. 
The constitutive model resident within LS-DYNA that was chosen for use with the analysis method is a 
continuum damage mechanics-based model for unidirectional composites, based on a theory developed 
by Matzenmiller, et al. (Ref. 12), that is implemented in LS–DYNA as MAT_58. The failure criterion 
implemented in the model is based on the Hashin failure criterion. For this material model, the required 
input stiffness parameters include the unidirectional-ply-level (or material axis system-based) axial and 
transverse modulus, in-plane shear modulus, and the in-plane Poisson’s ratio. The unidirectional-ply-level 
(or material axis system-based) strength data that is required includes the axial tensile and axial 
compressive failure stress and failure strain, the transverse tensile and transverse compressive failure 
stress and failure strain, and the in-plane shear failure stress and failure strain. The stiffness values are 
used by the material model to simulate the initial linear portion of the composite response. The ply-level 
strength and ultimate strain values are used to determine the nonlinear portion of the material response 
and to determine how the damage parameters used as internal variables within the material model evolve 
over the loading cycle. Furthermore, the user may specify a “stress-limiting factor” in the longitudinal 
and/or transverse directions. If the value of the “stress-limiting factor” is set to zero, the failure stress 
value is assumed to occur at the specified failure strain, and the material model then “connects the dots” 
(including enforcing any required material nonlinearity) in order to create the best-fit stress strain curve 
that accounts for the specified stiffness and strength values. If the “stress limiting factor” is set to one, the 
stress-strain curve of the composite is assumed to increase linearly until the maximum strength value is 
reached. At that point, the material is assumed to act as if it were a perfectly plastic material, with the 
strain in the specified direction increasing with no increase in stress until such point as the specified strain 
level is reached, at which point material failure is assumed to occur. These ideas are shown schematically 
in Figure 3. 
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For this study, since each subcell was modeled as a smeared homogeneous continuum, the properties 
that were input for the constitutive model were the effective stiffness and strength properties for each 
subcell, not the properties of the individual composite layers represented within the subcell. For each 
element, the longitudinal material direction was assumed to be along the axial (0°) fibers, and the in-plane 
transverse material direction was assumed to be perpendicular to this direction. Therefore, the composite 
unit cell was approximated as four orthotropic subcells (one element per subcell) joined together. The 
constitutive behavior of each subcell was simulated using the above-described material model. Two sets 
of material properties were required to analyze the unit cell. Subcells A and C required one set of stiffness 
and strength properties, since they represented a composite with 0°, 60°, and –60° layers. Since the 
composites were balanced, even though the location of the 60° and –60° layers were different for 
subcells A and C, the effective stiffness and strength properties were assumed to be the same. In a similar 
manner, stiffness and strength properties had to be defined for subcells B and D. Again, since these two 
subcells both represented a composite with a 60° layer and a –60° layer, the properties of both subcells 
were assumed to be the same. Note that the properties of subcells A and B were different not only because 
of the different fiber layups, but due to the fact that the local fiber volume fractions of the two subcells 
were different due to the presence or lack of axial fibers and pure matrix pockets in the subcell (Fig. 1(b)). 

The properties required by the model described above are the properties of the subcell, which is 
treated as an effective orthotropic material. A fundamental problem in the analysis of textile composites is 
that the representative lamina properties are not known and cannot be directly measured. Attempts can be 
made to fabricate unidirectional laminates using the same fiber tows that are used to make the preform. 
This approach is often not easy to accomplish, and the properties of the unidirectional lamina could be 
different from the properties of the fiber tows within the textile composite because of processing 
differences. For these reasons, a method was chosen that utilizes an approach based on a combination of 
classical laminate theory and concepts from composite micromechanics theory to calculate the lamina 
stiffness properties using a “bottom-up” approach, where the constituent properties were homogenized 
through the use of micromechanics theory to obtain the effective ply level properties, and then classical 
laminate theory was applied to obtain the effective stiffness properties of the subcell. To determine the 
strength properties for each subcell, properties from experimental data obtained on the braided composite 
were applied using a “top-down” approach to determine the required parameters. The details on this 
methodology will be discussed later in this paper. Although there are also some limitations in using this 
approach to determine the strength properties, the experimental requirements are simplified, and the 
calculated lamina properties represent the in-situ properties of each subcell within the braided composite. 
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Determination of Material Properties 

A computer program was developed to compute the effective stiffness and strength properties for 
each subcell based on the input of the fiber volume ratio of each subcell, fiber and matrix constitutive 
properties, and failure stress and failure strain data for the braided composite obtained through coupon 
level tests. Details of the procedures incorporated into the program are given below. 

Stiffness Properties 

Determining the stiffness properties to input into the constitutive model is a two-step procedure. First, 
given the fiber and matrix stiffness properties as listed in Littell (Refs. 10 and 11) and the subcell fiber 
volume ratio, micromechanics methods were used to determine the effective unidirectional stiffness 
properties of a single ply of the composite in the subcell. For this study, a micromechanics method 
developed by Sun and Chen (Ref. 13) was utilized due to the combination of accuracy of the method 
combined with the availability of simple analytical expressions to determine the effective stiffness 
properties. This combination was deemed beneficial in terms of utilizing the procedures in the context of 
a standalone program. The input data required by the micromechanics method includes the fiber volume 
ratio, the longitudinal, transverse, and shear fiber modulus, the fiber Poisson’s ratio, and the matrix 
modulus and Poisson’s ratio. For the micromechanical calculations, the average fiber volume ratio for 
each subcell was determined based on high fidelity finite element models of triaxially-braided composites 
developed by Li, et al. (Ref. 14), which were generated based on detailed measurements of representative 
braided composite geometries. From the finite element models, volumes corresponding to the equivalent 
subcell volumes in the “Braided Through the Thickness” simplified model were identified. The equivalent 
average fiber volume ratio in the selected volumes (corresponding to the subcells) was then calculated 
numerically from the mesh of the high-fidelity finite element model, based on the volume of fiber tows, 
local fiber volume fraction of the fiber tows (identified in Li, et al. (Ref. 14)), and the volume of any pure 
resin regions present in the identified volume. For the composites analyzed in this study, subcells A and C 
were found to have an average fiber volume ratio of 0.65, and subcells B and D were found to have an 
average fiber volume ratio of 0.50. 

Once the unidirectional stiffness properties for each subcell were computed, classical laminate theory 
(Ref. 15) was applied to obtain the overall effective stiffness for the subcell. For this study, only in-plane 
loads were assumed to be applied, which resulted in the moment curvature relations of classical laminate 
theory being neglected. In-plane normal-shear couplings were absent since the subcells were 
approximated as balanced laminates. Furthermore, as discussed earlier, even though the composite layups 
were anti-symmetric, tension-bending coupling was neglected. For purposes of computation, the 
composites were assumed to have unit thickness, so the loads per unit length could be approximated as 
stresses. The above assumptions were applied to write the constitutive equation for each subcell, such as 
is shown below for subcell A 
 

 

11 11 12 11

22 12 22 22

12 66 12

0

0

0 0

A A A A

A A A A

A A A

A A

A A

A

     
    
      
    
         

 (1) 

 
where Aij

A represents the stiffness matrix components for subcell A, σij
A represents the stresses in 

subcell A, εij
A represents the normal strains in subcell A and γij

A represents the engineering shear strains in 
subcell A. In this and all following equations, the “11” direction is assumed to be along the 0° fibers, the 
“22” direction is assumed to be perpendicular to the 0° fibers in the plane of the composite, and the “12” 
direction is assumed to be the in-plane shear direction. The stiffness matrix components were computed 
using the usual procedures of classical laminate theory (Ref. 15). Specifically, the unidirectional stiffness 
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matrix for a single ply of each subcell was computed based on the computed effective engineering 
properties. Next, the A matrix terms are written in terms of Q-bar, the transformed stiffness terms for a 
unidirectional ply in the structural axis system and the ratio of the ply thickness to the overall thickness in 
the manner of classical laminate theory as follows 
 

 
*ij ij k

k

A Q t
 

(2) 

 
where the sum is taken over the layers k, and tk is the thickness ratio of the kth layer. For subcell A, the 
expansion can be written as follows 
 

 

60deg 0deg 60deg
11 11 11 11

60deg 0deg 60deg
12 12 12 12

60deg 0deg 60deg
22 22 22 22

* * 2 *

* * 2 *

* * 2 *

A

A

A

A Q t Q t Q t

A Q t Q t Q t

A Q t Q t Q t







  

  

  
 (3) 

 
and in a similar manner the expansion for subcell B can be written. Note that for subcells A and C the 
thickness ratio of the 0° (axial) layer was taken to be 0.5 and the thickness ratio of the 60° and –60° (bias) 
layers were taken to be 0.25. This is due to the fact that the axial fiber tows for the composites used in this 
study were composed of 24 k flattened tows and the bias fiber tows were composed of 12 k flattened 
tows, leading to the axial fiber tows having a greater number of fibers. This fact is reflected in the “2t” 
terms in the “A” matrix calculations relating to the 0° layers. For subcells B and D, due to the lack of 
axial fibers the thickness ratio for both the 60° and –60° (bias) layers was taken to be 0.50. Based on the 
computed stiffness matrix terms, the required engineering constants for each subcell could then be 
determined using the usual procedures of orthotropic elasticity theory (Ref. 15). 

Strength Properties 

To compute the strength properties for each subcell required by the LS-DYNA MAT_58 constitutive 
model (Ref. 9), data obtained from global axial tension and compression (loading along the direction of 
the axial fibers), transverse tension and compression (loading perpendicular to the direction of the axial 
fibers), and in-plane shear coupon level tests were utilized. Note that for the constitutive model that is 
utilized for this study both the stresses and strains in the various component directions at failure are 
required to be input. As shown in Figure 3, the failure stresses and strains are used along with the “stress-
limiting parameter” to construct the appropriate stress-strain response for the composite. Particularly in 
simulating an impact event, where the stresses are highly multiaxial, properly determining all of the 
strength parameters is critical. The key step in the algorithm was utilizing a mechanics of materials 
approach to specify what the stresses and strains in each subcell were given an applied global stress. In 
this way, global failure stresses and strains were related to the local stresses and strains in the individual 
subcells at points of failure. These local stresses and strains were then utilized as the failure stresses and 
strains in the subcell for the MAT_58 constitutive model. Referring back to the subcell architecture as 
defined in Figures 1(b) and (c), and assuming each subcell had equal width (equal to 0.25 of the total 
width of the composite), the following iso-stress and iso-strain assumptions, referred to as the mechanics 
of materials assumptions (Ref. 15) were defined 
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11 11 11 11 11
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 (4) 

 
where stress and strain values without superscripts represent the global stress and strain values, and 
superscripted values represent the stresses and strains in the particular subcell. Note that due to the 
assumptions of the analysis approach, the stresses and strains in subcells A and C are equal, as are the 
stresses and strains in subcells B and D. As will be described below, for different types of loading the 
expressions in Equation (4) were manipulated and combined with the stiffness matrix equations for each 
subcell to relate the failure stresses and strains for each subcell to the global failure stresses and strains 
observed for the composite. 

To compute the axial tension failure stress and failure strain for each subcell, data obtained from axial 
tension tests on the braided composite were utilized. Representative results from an axial tension test on a 
T700S/E-862 triaxially-braided composite obtained by Littell (Ref. 11) (to be described in more detail 
later in this paper) are shown in Figure 4. As can be seen in the figure, the axial tension stress-strain curve 
became nonlinear at a stress level of approximately 495 MPa, and failed at a stress level of approximately 
800 MPa. To relate the global stresses to subcell stresses, Equation (4) was combined with the subcell 
stiffness matrix equations. For the special case of axial tension loading, all of the stresses except the 
longitudinal tension stress (σ11) were set equal to zero. As shown in Equation (4), due to the simplified 
nature of the discretization of the unit cell the transverse and shear stresses in each subcell are assumed to  
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be equal and equal to the global stress. For the case of uniaxial tensile loading, the global applied 
transverse and shear stresses are equal to zero. The following expressions relating the stresses in 
subcells A and B to the global applied longitudinal tension stress were obtained as follows: 
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(5) 

 
where S11 is the “11” component of the compliance matrix (inverse of the stiffness matrix) for the 
appropriate subcell (A or B). Since the ultimate failure in an axial tension test of a triaxially-braided 
composite has been found to be primarily due to the failure of the axial fibers (Ref. 10), the axial failure 
stress for subcell A (and by extension subcell C) (which has axial fibers) was determined using 
Equation (5) with the ultimate composite failure stress being utilized as the global applied stress. The 
axial failure stress for subcell B (and by extension subcell D) was computed using the global stress level 
at which the axial tension stress-strain curve became nonlinear. The rationale for making this assumption 
was based on observations made by Littell (Ref. 11) on the local response of braided composites during 
an axial tension test. During the course of an axial tension test, large strains in the bias fiber tows in the 
direction perpendicular to the load were observed by using digital image correlation methods to view full-
field surface strains, indicating that local matrix microcracking within the bias fiber tows leading to bias 
fiber tow failure (at least in the transverse direction) occurred well before the ultimate strength of the 
composite was reached. In addition, local delaminations were observed to take place in the bias fiber tows 
during axial loading. For this study, the assumption was made that the effects of these bias fiber tow 
failures would be most pronounced in subcells B and D since no axial fibers were present in those 
subcells. Furthermore, the assumption was made that the stress level at which these local failures in the 
bias fiber tows occurred (or at least became significant) was at least loosely correlated to the stress level 
at which the global stress-strain curve became nonlinear. These assumptions are justified based on 
observations made by Littell (Ref. 11). For composites where the bias fiber tow failure was not as 
pronounced and initiated at higher stress levels, the stress level at which the global axial tension stress-
strain curve became nonlinear was much higher. Furthermore, the global stress level at which the stress-
strain curve became nonlinear was at least loosely correlated to the stress level at which fiber splitting and 
out-of-plane delaminations occurred (Ref. 11). Therefore, as mentioned above, the local axial stress in 
subcell B (and subcell D) at the global stress level where the axial tension stress-strain curve became 
nonlinear was used as the failure stress for the subcell. Even though on a local level the bias fiber failure 
occurred in the transverse fiber direction, due to the large fiber angle of the bias fibers on the global 
homogeneous subcell level the effects were most pronounced in the global axial direction. Since the 
failure stresses for subcells B and D were much lower than the failure stresses for subcells A and C, the 
“stress-limiting parameter” was set to one (1) for subcells B and D. In this manner, once the failure stress 
in these subcells was reached, the stress would be held at a constant level, but strain could accumulate 
until the ultimate failure strain was reached. This behavior is displayed schematically in Figure 3. By 
applying this approach, premature failure of the simulations (since the composite could still accumulate 
strain even after the bias fibers failed) would be avoided and the analysis would be consistent with the 
approximations applied in the theory. To determine the axial failure strain for each subcell, which is also 
required for the constitutive model, based on the uniform strain assumptions shown in Equation (4), the 
axial tension failure strain for all of the subcells was set equal to the global axial tension failure strain of 
the composite. 

To compute the axial compression failure stress and failure strain for each subcell, data obtained from 
axial compression tests on the braided composite were utilized. Representative results from an axial 
compression test on a T700S/E-862 triaxially-braided composite obtained by Littell (Ref. 11) (to be 
described in more detail later in this paper) are shown in Figure 5. For the case of axial compression,  
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detailed examination of full-field strain data obtained during the tests by Littell (Ref. 11) indicated that 
the strain field was nearly uniform throughout the gage section, indicating that no local fiber tow damage 
was occurring before the final failure of the composite. Therefore, all of the subcells were assumed to fail 
simultaneously when the global axial compression-failure stress was reached. To compute the local axial 
compression-failure stress in each subcell, the global axial compression stress was used in Equation (5) to 
compute the local subcell stresses. Even though the stress-strain curve shown in Figure 5 is nonlinear and 
the expressions in Equation (5) are based on a linear elastic response, the assumption was made that the 
ratio of the local subcell stresses to the global applied stress remained constant. To remain consistent with 
the approximations of the theory, the axial compression-failure strain for each subcell was set equal to the 
global axial compression-failure strain. With the specification of the initial modulus, failure stress and 
failure strain of each subcell, the MAT_58 constitutive model used for the analysis was then capable of 
enforcing the required nonlinearities in the material response. 

To compute the transverse tension-failure stress and-failure strain for each subcell, data obtained from 
transverse tension tests on the braided composite (along with data from the axial tension tests for reasons 
to be described below) were utilized. Representative results from a transverse tension test on a T700S/ 
E-862 triaxially-braided composite obtained by Littell (Ref. 11) (to be described in more detail later in 
this paper) are shown in Figure 4. As can be seen in the figure, while the initial stiffness of the axial and 
transverse curves are the same, the transverse tension results become nonlinear at a much lower stress as 
compared to the axial tension results and the material fails at a much lower stress in transverse tension as 
compared to axial tension. Theoretically, since the triaxially-braided composites are nominally quasi-
isotropic, the axial tension- and transverse tension-failure stresses should be much closer to each other. 
The reasons for this discrepancy were discussed in detail by Littell, et al. (Refs. 10 and 11). As discussed 
in these papers, premature failure near fiber bundles that terminate at free edges can influence the shape 
of the stress-strain curve and the measured failure strain. A large amount of edge damage was observed in 
both axial and transverse tensile tests. In an axial tensile test the axial braid fibers lie along the specimen 
axis and are gripped on both ends during a test. Since these axial braid fibers carry most of the load, the 
reduction in strength caused by edge damage is small for the axial tensile test. The edge damage has a 
larger effect on the measured strength for the transverse tensile test because all of the axial braid fibers are 
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perpendicular to the applied load. There is no continuous load path between the grips through fibers 
because all axial and bias fiber bundles terminate at a free edge. The edge damage contributes to the 
nonlinearity of the experimental transverse-tensile stress-strain curve and also contributes to the reduced 
transverse-failure stress compared with the axial failure stress. Full-field strain measurements during the 
transverse tensile tests revealed regions of low strain up to 10 percent of the specimen width that were not 
carrying load because of edge damage. Since the damaged region did not carry load, the stress in the 
undamaged region was about 10 percent higher than the stress that was calculated based on the initial 
cross-sectional area of the specimen. The experimental transverse stress-strain curve was therefore not an 
accurate representation of the transverse tensile properties.  

Due to the fact that the transverse tensile results obtained experimentally were not accurate 
indications of the actual behavior of the material under transverse tensile loading conditions, indirect 
methods were utilized to obtain the transverse tensile failure stress and failure strain for each subcell. As a 
first approximation, the global transverse tension failure stress was assumed to be equal to the global 
axial-tension failure stress. For a quasi-isotropic material, this approximation theoretically should be valid 
and anecdotal evidence (Refs. 10 and 11) indicates that in actual structures the transverse tensile strength 
should be very close to the axial tensile strength. Following the approximations specified in Equation (4), 
the transverse tensile-failure stress in each subcell was set equal to the global axial-tension failure stress. 
To relate the global transverse stress to the subcell strains, Equation (4) was combined with the subcell 
constitutive equations. The following expressions relating the strains in subcells A and B to the global 
applied transverse-tension stress were obtained as follows: 
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 (6) 

 
where Sij is the “ij” component of the compliance matrix (inverse of the stiffness matrix) for the 
appropriate subcell (A or B). To apply Equation (6) to compute the transverse tensile failure strain for 
each subcell, a phenomenon that was discovered by Littell, et al. (Refs. 10 and 11) was incorporated into 
the algorithm. During the transverse tensile tests, large strains in the transverse direction in the axial fiber 
tows were observed, indicating that local matrix microcracking within the axial fiber tows leading to axial 
fiber tow failure (at least in the transverse direction) occurred well before the ultimate strength of the 
composite was reached. These results indicated that the behavior of subcells A and C in the transverse 
direction likely resembled an “elastic-plastic” response, where before the “fiber splitting” occurred the 
transverse stiffness was equal to the initial elastic value, but once “fiber splitting” occurred the subcells 
could accumulate strain but not stress, and the local modulus was reduced to a very small value. 
Therefore, at the point of transverse-tensile failure the overall transverse stiffness of subcells A and C was 
most likely not equal to the initial elastic stiffness value, but instead was reduced due to the transverse 
failure in the axial fiber tows. As a first approximation to account for this effect, when Equation (6) was 
applied in the property calculation algorithm the transverse compliance matrix value for subcell A (S22

A) 
was doubled from the initial elastic value to reflect the reduced stiffness due to the local microcracking in 
the axial fiber tows. 

To compute the transverse compression-failure stress and failure strain for each subcell, data obtained 
from transverse compression tests on the braided composite were utilized. Representative results from a 
transverse compression test on a T700S/E-862 triaxially braided composite obtained by Littell (Ref. 11) (to 
be described in more detail later in this paper) are shown in Figure 5. For the case of transverse 
compression, similar to the case for axial compression, detailed examination of full-field strain data obtained 
during the tests by Littell (Ref. 11) indicated that the strain field was uniform throughout the gage section, 
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indicating that no local fiber tow damage was occurring before the final failure of the composite. Therefore, 
all of the subcells were assumed to fail simultaneously when the global transverse compression-failure stress 
was reached. To compute the local transverse compression-failure stress in each subcell, once again the 
assumptions given in Equation (4) were applied and the subcell failure stresses were assumed to be equal to 
the global composite transverse compression-failure stress. To compute the subcell transverse compression-
failure strains, an expression similar to Equation (6) was used with some modifications. First, Equation (6) 
was used directly with the global transverse compression-failure stress as input. However, the strains 
computed using Equation (6) could not be utilized directly due to the fact that, as observed in Figure 5, the 
transverse compression response of the composite is nonlinear, and Equation (6) was developed assuming a 
linear elastic response. Next, the ratio of each subcell strain to the total transverse compression strain under 
elastic conditions (computed using the second expression in Equation (4)) was determined. The assumption 
was then made that the strain ratio under elastic conditions was identical to the actual strain ratio. Therefore, 
the strain ratio for each subcell was scaled using the actual transverse compression-failure strain to obtain 
the transverse compression failure strain for each subcell. 

To compute the in-plane shear failure stress and failure strain for each subcell, a procedure very 
similar to that utilized for the case of transverse compression was utilized. Once again, detailed 
examination of full-field strain data obtained during coupon level tests by Littell (Ref. 11) indicated that 
the strain field was uniform throughout the gage section, indicating that no local fiber tow damage was 
occurring before the final failure of the composite. Therefore, all of the subcells were assumed to fail 
simultaneously when the global in-plane shear failure stress was reached. To compute the local in-plane 
shear failure stress in each subcell, once again the assumptions given in Equation (4) were applied and the 
subcell failure stresses were assumed to be equal to the global composite in-plane shear failure stress. To 
compute the subcell in-plane shear-failure strains, Equation (6) was used with some modifications. First, 
Equation (6) was used directly with the in-plane shear failure stress as input. However, the strains 
computed using Equation (6) could not be utilized directly due to the fact that, while not shown here, the 
in-plane shear response of the composite is nonlinear, and Equation (6) was developed assuming a linear 
elastic response. Next, the ratio of each subcell strain to the total in-plane shear strain under elastic 
conditions was determined. The assumption was then made that the strain ratio under elastic conditions 
was identical to the actual strain ratio. Therefore, the strain ratio for each subcell was scaled using the 
actual in-plane shear-failure strain to obtain the in-plane shear-failure strain for each subcell. 

Simulation of Quasi-Static Tension Tests 

A series of simulations was conducted to evaluate the analysis methods described above. Specifically, 
quasi-static axial and transverse coupon-level tensile tests on two representative triaxially-braided 
composites were simulated. At this time, only the tensile response was simulated due to the relative 
simplicity of the finite element models. In the future, to fully evaluate the material model compressive 
and shear tests will also be simulated. The materials were composed of a two-dimensional triaxial-braided 
preform and a 177 °C (350 °F) cure epoxy resin. For both materials, TORAYCA T700S fibers (Toray 
Carbon Fibers America, Inc.), a high strength, standard modulus carbon fiber was used. For the first 
material, EPICOTE Resin 862/EPIKURE Curing Agent W system (Hexion Specialty Chemicals) 
(E-862 for short), a two-part low viscosity system was used. For the second material, CYCOM PR 520 
(Cytec Industries, Inc.), a one part toughened resin, was used.  

A [0°/60°/–60°] triaxial-braid architecture was manufactured. The 0° axial fibers were 24 k flattened 
tows while the ±60° bias fibers were 12 k flattened tows. Although larger fiber bundles were used in the 
axial direction, the fiber bundle spacing in the axial and bias directions were adjusted to give the same 
fiber volume in the axial and bias directions. This is a nominally quasi-isotropic in-plane fiber 
architecture, so the global in-plane stiffness is expected to be the same in all directions when the region of  
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interest includes several unit cells of the braid material. Composite panels were fabricated by placing six 
layers of the braided preform into a mold with the 0° fibers aligned in the same direction. Although the 
axial (0°) fibers in the various layers were aligned, the lateral position of the axial tows in the six layers 
was random. Resin was injected into the closed mold and cured according to processing conditions 
recommended by the resin manufacturer. The global fiber-volume ratio of the cured composites was 
measured using the acid digestion technique. Both the T700S/PR520 and T700S/E-862 composites had a 
global fiber volume of 55.9±0.18 percent. 

The finite element meshes used in the study are shown in Figure 6. The finite element model for the 
axial tension test was 30.48 cm (12.0 in.) long and 3.56 cm (1.40 in.) wide and had 369 nodes and 320 
shell elements. The model for the transverse tensile test was 30.48 cm (12 in.) long and 3.56 cm (1.40 in.) 
wide and had 522 nodes and 476 elements. The fixed end of the model was constrained in all three 
displacement and rotation directions. The loading was displacement-controlled at the rate of 0.0635 cm/s 
(0.025 in./s), which was consistent with the test conditions. Each subcell was modeled as a shell element, 
which allowed the braid architecture to be explicitly modeled with the finite element mesh of the coupon. 
In Figure 6, the red elements represent subcell A, the blue elements represent subcell B, the green 
elements represent subcell C, and the yellow elements represent subcell D. The unit cell orientations for 
both of the modeling conditions are highlighted in Figure 6 for reference. In the axial test simulation, the 
unit cell is oriented parallel to the direction of the applied load. In the transverse test simulation, the unit 
cell is oriented perpendicular to the direction of the applied load. While not discussed in this report, the 
entire specimen was modeled as opposed to a single unit cell in order to investigate the ability of the 
method to simulate the damage patterns that occur during a coupon test. 
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To compute the stiffness properties for each subcell, first the subcell fiber volume ratios were 
determined as discussed earlier. In applying the micromechanics analysis methods, the stiffness properties 
for the fiber and matrix given in Table 1 were applied. Given the observations made by Littell (Ref. 11) 
that the measured stiffness properties for both of the braided composites were approximately the same, 
identical stiffness properties for both of the resin systems were used (based on values listed by Littell 
(Ref. 11) for the PR520 resin). The equivalent stiffness properties (along with the equivalent strength 
properties) for each subcell for each of the two material systems are given in Table 2. To determine the 
equivalent strength properties for each subcell, the methods and procedures discussed in the previous 
section were applied. The numerical values of the global failure stresses and failure strains that were 
utilized to compute the equivalent subcell strength properties for each of the two materials are given in 
Table 3. The equivalent strength values that were computed for each of the two materials are given in 
Table 2. 
 

TABLE 1.—CONSTITUENT PROPERTIES 
  E11 (GPa) E22 (GPa) ν12 G12 (GPa) 
T700 (Fiber) 230.00 15.00 0.20 27.00 
E-862 (Resin) 4.00 4.00 0.36 1.47 
PR520 (Resin) 4.00 4.00 0.36 1.47 

 
TABLE 2.—MATERIAL PROPERTY VALUES USED FOR THE QUASI-STATIC COUPON SIMULATIONS 

Material T700–E862 T700–PR520 

Material Parameter Name (LS-DYNA name) (MPa) (MPa) 
Subcell A&C B&D A&C B&D 

Axial modulus (EA) 80815 8111 80815 8111 
Transverse modulus (EB) 47215 37536 47215 37536 
In plane shear modulus (GAB) 14982 23041 14982 23041 
In plane Poisson ratio (PRBA) 0.175 1.464 0.175 1.464 
Axial tensile failure strain (E11T) 0.018 0.018 0.024 0.024 
Axial compressive failure strain (E11C) 0.012 0.012 0.019 0.019 
Transverse tensile failure strain (E22T) 0.035 0.013 0.045 0.017 
Transverse compressive failure strain (E22C) 0.009 0.007 0.014 0.010 
In plane shear failure strain (GMS) 0.024 0.016 0.029 0.019 
Axial tensile stress at failure (XT) 1454 90 1905 191 
Axial compressive stress at failure (XC) 613 62 687 69 
Transverse tensile stress at failure (YT) 800 800 1048 1048 
Transverse compressive stress at failure (YC) 305 305 346 346 
In plane shear stress at failure (SC) 257 257 308 308 
Stress limiting parameter for axial tension (SLIMT1) 0 1 0 1 
Stress limiting parameter for transverse tension (SLIMT2) 0 0 0 0 
Stress limiting parameter for axial compression (SLIMC1) 0 0 0 0 
Stress limiting parameter for transverse compression (SLIMC2) 0 0 0 0 
Stress limiting parameter for shear (SLIMS) 0 0 0 0 

 
TABLE 3.—GLOBAL STRESS VALUES USED IN CALCULATIONS 

(MPa) T700/E862 T700/PR520 
Global stress at failure (Axial tension) 800 1048 
Global stress at failure (Transverse tension) 800 1048 
Global stress at failure (Axial compression) 337 378 
Global stress at failure (Transverse compression) 305 346 
Global stress at failure (Shear) 257 308 
Stress at pt. of nonlinearity (Axial tension) 495 1048 
Global strain at failure (Axial compression) 0.012 0.019 
Global strain at failure (Transverse compression) 0.008 0.012 
Global strain at failure (Shear) 0.020 0.024 
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Tensile stress versus strain curves were generated for both the T700S/E-862 and T700S/PR520 
materials in the axial and transverse directions to examine the correlation of the analysis model to the test 
data. Even though the coupon level test data was used to obtain the input data applied to the model, due to 
the complexity of the material model and the ways that the various stiffness and strength parameters 
interact, the stiffnesses and strengths predicted by the analytical simulations may not necessarily 
correspond to the parameters determined from the test data. Specimen failure was deemed to occur when 
all of the elements in a row failed. The element failure occurred nearly simultaneously in the simulations, 
leading to a fairly abrupt ultimate failure. The resulting stress-strain curves for the E-862 system are 
shown in Figure 7 (axial tension) and Figure 8 (transverse tension). The resulting stress-strain curves for 
the PR520 system are shown in Figure 9 (axial tension) and Figure 10 (transverse tension). In these 
figures the test data is as determined by Littell, et al. (Ref. 10). 
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For the axial tension test, for both materials the deformation response and ultimate failure stress 
computed by the simulations correlated well with the experimental results. The initial stiffness was well 
correlated for both materials. The nonlinearity in the stress-strain curve for the E-862 material was 
correlated well. The simulation of the axial tension response of the PR520 material displayed some 
nonlinearity that was not present in the experimental response, but the maximum error was approximately 
7 percent. The reasons for this discrepancy are unclear and need to be explored further. The ultimate 
strength of the transverse tensile specimen was significantly overpredicted, and the simulated response of 
the transverse tensile test was much more linear than observed in the experiments for both materials. As 
mentioned earlier, the most likely cause of the discrepancy in the transverse tensile results is due to the 
edge damage and low strain zones that were observed in the experimental transverse-tension tests, leading 
to the experimental transverse stress-strain curve not being an accurate representation of the true 
composite tensile response. Due to the way in which the braid architecture was discretized and simulated 
in the analytical model, with the fiber tows not being modeled in a continuous manner, these local effects 
could not be captured in the simulations as each subcell in a sense is an independent laminated composite. 
As a result, the simulated results from the transverse tension test in all likelihood were more 
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representative of the response that would be observed if the response was measured at a location far away 
from where edge effects would be significant. Therefore, the fact that the simulated transverse-tension 
response of the material was more linear than the experimental results, with a transverse-failure stress 
only slightly lower than the axial-failure stress, was consistent with the strength properties input into the 
constitutive model (with the assumptions discussed above) and most likely actually more representative 
of the response of the material as utilized in an engineering structure. In a qualitative sense, the simulated 
transverse tension results are consistent with the expected response of the material, but a full detailed 
quantitative examination of the transverse tension simulation results will only be possible when improved 
experimental results are obtained. 

Simulation of Impact Tests 

The composite materials presented in this research are sometimes used in impact situations. This 
section presents preliminary investigations which use the developed composite models for impact 
simulations for the detection and prediction of impact velocity thresholds and failure depictions. The 
T700/E862 material system was examined for the impact simulations. 

In the impact tests, which were conducted in the NASA Glenn Research Center Ballistic Impact 
Laboratory and which are described in detail in Reference 16, a single stage compressed-gas gun was 
used to propel an aluminum 2024 projectile into 30.5 cm (12 in.) by 30.5 cm (12 in.) by 3.2 mm 
(0.125 in.) composite panels. The composite panel was held in a circular fixture with an aperture of 
20.54 cm (10 in.). The projectile was a thin-walled hollow AL 2024 cylinder with a nominal mass of 
50 gm and a front face with a compound radius. The overall length of the projectile was 4.95 cm 
(1.947 in.), the wall thickness was 0.076 cm (0.030 in.), and the nominal diameter was 5.067 cm 
(1.995 in.). Tests were performed over a range of impact velocities to determine the velocity for onset of 
damage, the growth of damage with increasing velocities, the penetration threshold, and the damage 
pattern induced by penetration. Twelve panel tests were conducted using impact velocities ranging from 
157 m/s (515 ft/s) to 175 m/s (573 ft/s). The threshold velocity for penetration was between 161 m/s 
(530 ft/s) and 168 m/s (550 ft/s). 

To conduct simulations of the impact tests described above, the flat panels used in the impact tests 
were modeled using a finite element mesh 0.3048 m (12 in.) wide, 0.3048 m (12 in.) tall and 0.3175 cm 
(0.125 in.) thick with 2700 shell elements. The finite element model of the panel, including the circular 
boundary conditions that were applied to simulate the experimental conditions, is shown in Figure 11. 
The simulated panels had a clamped boundary in a 25.4 cm (10 in.) diameter circle at the center. The  
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nodes in this boundary had all six degrees-of-freedom constrained. The panel was made up of 810 unit 
cells; 15 unit cells across and 54 unit cells vertically. The alternating patterns of pink, blue, green, and 
yellow represent the four subcells of the unit cell used to simulate the composite braid geometry. The 
projectile was modeled as a linear elastic material to accurately account for energy absorption due to 
elastic deformation of the projectile. The density and stiffness of the projectile in the simulation were 
measured from the aluminum used in the experimental tests (Ref. 16). The contact algorithm that used 
was the LS-DYNA contact “Contact_Automatic_Single_Surface,” (Ref. 9). 

Simulations were run for various impact velocities above and below the penetration threshold. The 
penetration threshold in the simulations was defined as the velocity at which the projectile fully 
penetrated the plate with a residual projectile velocity of zero. The model predicted penetration taking 
place at an impact velocity of 160 m/s (525 ft/s), which was only slightly below the experimental 
threshold velocity of 161 to 168 m/s (530 to 550 ft/s). The reason for the slight discrepancy could be 
related to the fact that quasi-static properties were utilized to compute the equivalent strength parameters 
applied in the analysis. The actual response and properties of the material may be a function of strain rate, 
with the various failure stresses and strains being higher at higher strain rates. Future efforts will 
investigate the effects on the predictions of using strain rate-dependent material properties. 

A photograph of the damage patterns that were obtained in a panel impacted near the threshold 
velocity is shown in Figure 12, with a diagram of the simulated impact damage patterns shown next to it. 
The unsymmetric damage patterns observed in the simulation results was due to the fact that the projectile 
rotated during the simulations and did not impact exactly head on. The projectile rotation has also been 
observed in the experimental tests (Ref. 16). In the experimental impact test failure initiated along the 
axial fibers in the center of the specimen and then propagated outward along both the axial and the bias 
fibers. The simulated results predicted a similar damage pattern with the failure initiating along the bias 
fibers around the edges of the damage area, then propagating horizontally, and finally zipping vertically 
near the center of the damage area. However, in the simulation, a more rounded opening than that seen in 
the experimental tests was created. It is possible this difference could be due again to the use of quasi-
static properties. There may be some anisotropic stiffening due to rate effects. Further research will be 
done to investigate the effects of strain rate.   
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Conclusions 

A macro-level finite element-based approach has been developed which allows for the simulation of 
the response of a triaxially-braided composite in a manner which takes into account the architecture of the 
braided material within a structure. The input material properties utilized for the analysis can be 
determined based on experimental tests conducted on the braided composite. The correlation between the 
analysis results and results obtained from quasi-static tensile coupon tests was reasonably good. A 
representative flat panel test was simulated using the analysis model. The penetration velocity was 
slightly underpredicted, and the damage patterns obtained were similar to those obtained experimentally. 
The discrepancy between the experimental and analytical results is most likely due to the effects of strain 
rate on the material properties which is not currently accounted for within the material model. The 
analysis model, which utilizes LS-DYNA shell elements, appears promising in its ability to simulate the 
axial and transverse deformation and failure of the braided material. Future efforts will involve 
incorporating the effects of strain rate into the model, as well as investigating in more detail the capability 
of the model to simulate impact events. 
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